Important Note: 1. On completing vour answers, compulsorily draw diagonal cross lines on the remaining blank pages

Dun announce or madely or

10CS56

Fifth Semester B.E. Degree Examination, May 2017 Formal Language and Automata Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Define following terms:
 - i) DFA (Deterministic finite automata).
 - ii) NFA (non-deterministic finite automata).

(04 Marks)

- b. Design finite automata for following languages:
 - i) Set of all strings with exactly three consecutive 1's over $\Sigma = \{0, 1\}$
 - ii) Set of all strings that end with ab or ba over $\Sigma = \{a, b\}$.
 - iii) $L = \{W/W \in (a + b)^* \text{ such that } n_a(w) \text{ mod } 3 = 0 \text{ and } n_b(w) \text{ mod } 2 = 0\}.$
 - iv) Design an NFA to recognize language $L = \{W / W \in 0101^n \text{ or } 010^n \text{ where } n >= 0\}.$

(08 Marks) (08 Marks)

c. Convert the following NFA to its equivalent DFA:

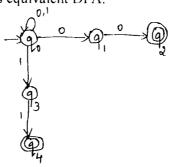


Fig.Q.1(c)

2 a. Define \in -closure. Consider \in - NFA over $\Sigma = \{ \in, +, -, 0 - 9, \cdot \}$.

(08 Marks)

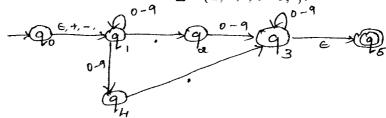


Fig.Q.2(a)

- i) Compute \in closure of each state.
- ii) Convert the automata to DFA.
- b. Define regular expression. Write regular expressions for following languages:
 - i) Set of all strings that begin with 1011 over $\Sigma = \{0, 1\}$.

ii)
$$L = \{ a^n b^m c^p | n <= 4, m >= 2, p <= 2 \}.$$

(04 Marks)

c. Define \in -NFA for regular expression aa* (a + b)*.

(04 Marks)

d. Obtain regular expression from finite automata using state elimination method. (04 Marks)

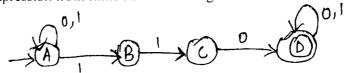


Fig.Q.2(d)

- 3 a. State pumping lemma for regular language. Prove that $L = \{a^{n!} | n >= 0\}$ is not regular language. (07 Marks)
 - b. If h is homomorphism from alphabet ∑ to alphabet T and L is regular language over T, then h⁻¹ (L) is also regular language.
 (05 Marks)

c.

δ	0	1
$\rightarrow q_1$	q_2	q_3
q_2	q ₃	q_5
*q3	q ₄	q_3
q_4	q_3	q_5
*q ₅	q_2	q 5

- i) Draw table of distinguish abilities for this automata.
- ii) Construct minimum state equivalent DFA.

(08 Marks)

- 4 a. Define context free grammar. Obtain CFG for following language:
 - i) $L = \{a^n b^{n+2} | n > = 0\}$

ii) $L = \{0^m 1^m 2^n | m >= 1, n >= 0\}.$

(06 Marks)

b. Given a grammar with production

 $S \rightarrow AS/\in$

 $A \rightarrow aa/ab/ba/bb$

Obtain leftmost derivation, rightmost derivation and parse tree for string a a b b b a.

(06 Marks)

c. Define yield of parse tree. Show that the given grammar is ambiguous for string a + b * c

 $E \rightarrow E + E / E * E / (\epsilon) I$

 $I \rightarrow a / b / c$. d. Write applications of context free grammar (LFG). (06 Marks)

(02 Marks)

PART - B

- 5 a. Obtain a PDA to accept a string of balanced parentheses. The parentheses to be considered are (),], [. Draw transition diagram of PDA and give its instantaneous description (ID) for string [()()] accepted by empty stack. (10 Marks)
 - b. Define deterministic PDA. Is the PDA to accept the language L = {aⁿb²ⁿ / n > = 1} is deterministic?
 - c. Convert the following PDA to CFG:

$$\delta (q_0, q, z) = (q_0, AZ)$$

$$\delta (q_0, b, A) = (q_0, AA)$$

$$\delta (q_0, a, A) = (q_1, \in).$$

(06 Marks)

6 a. Define GNF and CNF grammar. Reduce grammar into CNF

 $S \rightarrow AaB/aaB$

 $A \rightarrow \in$

 $B \rightarrow bbA/\in$.

(07 Marks)

b. Define nullable, useless variable. Consider the grammar.

 $S \rightarrow AC / aB / AD$

 $A \rightarrow \in /ab/s$

 $B \rightarrow Aa / AB$

 $C \rightarrow AAa / \in$

 $D \rightarrow EbD$

 $E \rightarrow bb$

i) Eliminate ∈ production.

ii) Eliminate any unit production in resulting grammar.

iii) Eliminate any useless production in resulting grammar.

(08 Marks)

c. If L is context free language, then so is L^R. Prove.

(05 Marks)

- 7 a. Design a turning machine to recognize language $L = \{0^n | 1^n / n > 1\}$ and write its transition diagram and give its ID for string 0011. (10 Marks)
 - b. Explain working of turning machine with neat diagram and instantaneous description (ID) for turning machine. (05 Marks)
 - c. Write a note on multitape turning machine.

(05 Marks)

- Write a note on:
 - a. Post correspondence problem.
 - b. Application of regular expression.
 - c. L is recursive language, so is L
 - d. Universal language.

(20 Marks)